翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacobi-Anger expansion : ウィキペディア英語版
Jacobi–Anger expansion
In mathematics, the Jacobi–Anger expansion (or Jacobi–Anger identity) is an expansion of exponentials of trigonometric functions in the basis of their harmonics. It is useful in physics (for example, to convert between plane waves and cylindrical waves), and in signal processing (to describe FM signals). This identity is named after the 19th-century mathematicians Carl Jacobi and Carl Theodor Anger.
The most general identity is given by:〔Colton & Kress (1998) p. 32.〕〔Cuyt ''et al.'' (2008) p. 344.〕
:
e^ = \sum_^ i^n\, J_n(z)\, e^,

where J_n(z) is the n-th Bessel function of the first kind and i is the imaginary unit, i^2=-1.
Consequently:
:
e^ = \sum_^ J_n(z)\, e^.

Using the relation J_(z) = (-1)^n\, J_(z), valid for integer n, the expansion becomes:〔〔
:e^=J_0(z)\, +\, 2\, \sum_^\, i^n\, J_n(z)\, \cos\, (n \theta).
==Real-valued expressions==
The following real-valued variations are often useful as well:〔Abramowitz & Stegun (1965) (p. 361, 9.1.42–45 )〕
:
\begin
\cos(z \cos \theta) &= J_0(z)+2 \sum_^(-1)^n J_(z) \cos(2n \theta),
\\
\sin(z \cos \theta) &= -2 \sum_^(-1)^n J_(z) \cos\left(\theta\right ),
\\
\cos(z \sin \theta) &= J_0(z)+2 \sum_^ J_(z) \cos(2n \theta),
\\
\sin(z \sin \theta) &= 2 \sum_^ J_(z) \sin\left(\theta\right ).
\end


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacobi–Anger expansion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.